MedDRA + VAERS: A marriage made in hell?

This post is a Golden DDoS Award winner

So far, this blog was DDoS’d only three times within 24 hours of its publication. That deserves a prize.

Quick: what do a broken femur, Henoch-Schönlein purpura, fainting, an expired vaccine and a healthy childbirth have in common? If your answer was “they’re all valid MedDRA codes”, you’re doing pretty well. If you, from that, deduced that they all can be logged on VAERS as adverse effects of vaccination, you’re exceeding expectations. And if you also realise that the idea that Jane got an expired HPV vaccine, and as a consequence broke her femur, developed Henoch-Schönlein purpura, and suddenly gave birth to a healthy baby boy is completely idiotic and yet can be logged on VAERS, you’re getting where I’m going.

MedDRA is a medical nomenclature specifically developed for the purposes of pharmacovigilance. The idea is, actually, not dreadful – there are some things in a usual medical nomenclature like ICD-10 that are not appropriate for a nomenclature used for pharmacovigilance reporting (V97.33: sucked into jet engine comes to my mind), and then there are things that are specific to pharmacovigilance, such as “oh shoot, that was not supposed to go up his bum!” (MedDRA 10013659: vaccine administered at inappropriate site), “we overdosed little Johnny on the flu vaccine!” (MedDRA 10000381: drug overdose, accidental) and other joys that generally do only happen in the context of pharmacovigilance. So far, so good.

At the same time, MedDRA is non-hierarchical, at least on the coding level. Thus, while the ICD code V97.33 tells you that you’re dealing with an external cause of mortality and morbidity (V and Y codes), specifically air and space transport (V95-97), more specifically ‘other’ specific air transport accidents, specifically getting sucked into a jet engine (V97.33), there’s no way to extract from MedDRA 10000381 what the hell we’re dealing with. Not only do we not know if it’s a test result, a procedure, a test or a disease, we are hopelessly lost as to figuring out what larger categories it belongs to. To make matters worse, MedDRA is proprietary – which in and of itself is offensive to the extreme to the idea of open research on VAERS and other public databases: a public database should not rely on proprietary encoding! -, and it lacks the inherent logic of ICD-10. Consider the encoding of the clinical diagnosis of unilateral headache in both:

SOC: System Organ Class, HLGT: High Level Group Term, HLT: High Level Term, PT: Preferred Term, LLT: Lower Level Term

Attempting to encode the same concept in MedDRA and ICD-10, note that the final code in MedDRA (10067040) does not allow for the predecessors to be reverse engineered, unless a look-up table is used – which is proprietary. ICD-10, at the same time, uses a structure that encodes the entire ‘ancestry’ of an entity in the final code. Not only does this allow for intermediate codes, e.g. G44 for an ‘other’ headache syndrome until it is closer defined, it also allows for structured analysis of the final code and even without a look-up table (which is public, as is the whole ICD-10), the level of kinship between two IDC-10 codes can be ascertained with ease.

We know that an ICD code beginning with F will be something psychiatric and G will be neurological, and from that alone we can get some easy analytical approaches (a popular one is looking at billed codes and drilling down by hierarchical level of ICD-10 codes, something in which the ICD-10 is vastly superior to its predecessor). MedDRA, alas, does not help us such.

Garbage in, garbage out

OK, so we’ve got a nomenclature where the codes for needlestick injury, death, pneumonia, congenital myopathy and a CBC look all the same. That’s already bad enough. It gets worse when you can enter any and all of these into the one single field. Meet VAERS.

The idea of VAERS is to allow physicians, non-physicians and ‘members of the public’ to report incidents. These are then coded by the CDC and depending on seriousness, they may or may not be investigated (all reports that are regarded as ‘serious’ are investigated, according to the CDC). The problem is that this approach is susceptible to three particular vulnerabilities:

  • The single field problem: VAERS has a single field for ‘symptoms’. Everything’s a symptom. This includes pre-existing conditions, new onset conditions, vaccination errors, lab tests (not merely results, just the tests themselves!), interventions (without specifying if they’re before or after the vaccine), and so on. There is also no way to filter out factors that definitely have nothing to do with the vaccine, such as a pre-existing birth defect. The History/Allergies field is not coded.
  • The coding problem: what gets coded and what does not is sometimes imperfect. This being a human process, it’s impossible to expect perfection, but the ramifications to this to certain methods of analysis are immense. For instance. if there are 100 cases of uncontrollable vomiting, that may be a signal. But if half of those are coded as ‘gastrointestinal disorder’ (also an existing code), you have two values of 50, neither of which may end up being a signal.
  • The issue of multiple coding: because MedDRA is non-hierarchical, it is not possible to normalise at a higher level (say, with ICD-10 codes, at chapter or block level), and it is not clear if two codes are hierarchically related. In ICD-10, if a record contains I07 (rheumatic tricuspid valve disease) and I07.2 (tricuspid stenosis with tricuspid insufficiency), one can decide to retain the more specific or the less specific entry, depending on intended purpose of the analysis.

In the following, I will demonstrate each of these based on randomly selected reports from VAERS.

The Single Field Problem (SFP)

The core of the SFP is that there is only one codeable field, ‘symptoms’.

VAERS ID 375693-1 involves a report, in which the patient claims she developed, between the first and second round of Gardasil,

severe stomach pain, cramping, and burning that lasted weeks. Muscle aches and overall feeling of not being well. In August 2009 patient had flu like symptoms, anxiety, depression, fatigue, ulcers, acne, overall feeling of illness or impending death.

Below is the patient’s symptom transposition into MedDRA entities (under Symptoms):

Event details for VAERS report 375693-1

The above example shows the mixture of symptoms, diagnostic procedures and diagnostic entities that are coded in the ‘Symptoms’ field. The principal problem with this is that when considering mass correlations (all drugs vs all symptoms, for instance), this system would treat a blood test just as much as a contributor to a safety signal as anxiety or myalgia, which might be true issues, or depression, which is a true diagnosis. Unfiltered, this makes VAERS effectively useless for market basket analysis based (cooccurrence frequency) analyses.

Consider for instance, that PRR is calculated as

PRR_{V,R} = \frac{\Sigma (R \mid V) \/ \Sigma (V)}{\Sigma (R \mid \neg V) \/ \Sigma (\neg V)} = \frac{\Sigma (R \mid V)}{\Sigma (V)} \cdot \frac{\Sigma (\neg V)}{\Sigma (R \mid \neg V)}

where V denotes the vaccine of interest, R denotes the reaction of interest, and the \Sigma operator denotes the sum of rows or columns that fulfill the requisite criteria (a more detailed, matrix-based version of this equation is presented here). But if \{R\}, the set of all R, contains not merely diagnoses but also various ‘non-diagnoses’, the PRR calculation will be distorted. For constant V and an unduly large R, the values computationally obtained from the VAERS data that ought to be \Sigma(R \mid V) and \Sigma(R \mid \neg V) will both be inaccurately inflated. This will yield inaccurate final results.

Just how bad IS this problem? About 30% bad, if not more. A manual tagging of the top 1,000 symptoms (by N, i.e. by the number of occurrences) was used as an estimate for how many of the diagnostic entities do not disclose an actual problem with the vaccine.

In this exercise, each of the top 1,000 diagnostic codes (by N, i.e. by occurrence) were categorised into a number of categories, which in turn were divided into includable (yellow) and non-includable (blue) categories. An includable category reveals a relevant (=adverse) test result, a symptom, a diagnosis or a particular issue, while non-includables pertain to procedures, diagnostics without results, negative test results and administration, storage & handling defects.

According to the survey of the top 1,000 codes, only a little more than 70% of the codes themselves disclose a relevant issue with the vaccine. In other words, almost a third of disclosed symptoms must be pruned, and these cannot be categorically pruned because unlike ICD-10, MedDRA does not disclose hierarchies based on which such pruning would be possible. As far as the use of MedDRA goes, this alone should be a complete disaster.

Again, for effect: a third of the codes do not disclose an actual side effect of the medication. These are not separate or identifiable in any way other than manually classifying them and seeing whether they disclose an actual side effect or just an ancillary issue. Pharmacovigilance relies on accurate source data, and VAERS is not set up, with its current use of MedDRA, to deliver that.

The coding problem

Once a VAERS report is received, it is MedDRA coded at the CDC. Now, no manual coding is perfect, but that’s not the point here. The problem is that a MedDRA code does not, in and of itself,  indicate the level of detail it holds. For instance, 10025169 and 10021881 look all alike, where in fact the first is a lowest-level entity (an LLT – Lower-Level Term – in MedDRA lingo) representing Lyme disease, while the former is the top-level class (SOC – System Organ Class) corresponding to infectious diseases. What this means is that once we see a MedDRA coded entity as its code, we don’t know what level of specificity we are dealing with.

The problem gets worse with named entities. You see, MedDRA has a ‘leaf’ structure: every branch must terminate in one or more (usually one) LLT. Often enough, LLTs have the same name as their parent PT, so you get PT Lyme disease and LLT Lyme disease. Not that it terrifically matters for most applications, but when you see only the verbose output, as is the case in VAERS, you don’t know if this is a PT, an LLT, or, God forbid, a higher level concept with a similar name.

Finally, to put the cherry on top of the cake, where a PT is also the LLT, they have the same code. So for Lyme disease, the PT and LLT both have the code 10025169. I’m sure this seemed like a good idea at the time.

The issue of multiple coding

As this has been touched upon previously, because MedDRA lacks an inherent hierarchy, a code cannot be converted into its next upper level without using a lookup table, whereas with, say, ICD-10, one can simply normalise to the chapter and block (the ‘part left of the dot’). More problematically, however, the same code may be a PT or an LLT, as is the case for Lyme disease (10025169).

Let’s look at this formally. Let the operator \in^* denote membership under the transitive closure of the set membership relation, so that

  1. if x \in A, then x \in^* A,
  2. if x \in A and A \subseteq B, then x \in^* B.

and so on, recursively, ad infinitum. Let furthermore \in^*_{m} denote the depth of recursion, so that

  1. for x \in A:  x \in^*_{0} A,
  2. for x \in A \mid A \subseteq B:  x \in^*_{1} B,

and, once again, so on, recursively, ad infinitum.

Then let a coding scheme \{S_{1...n}\} exhibit the Definite Degree of Transitiveness (DDoT) property iff (if and only if) for any S_m \mid m \leq n, there exists exactly one p for which it is true that S_m \in^*_{p} S.

Or, in other words, two codes S_q, S_r \mid q, r \leq n, may not be representable identically if p_q \neq p_r. Less formally: two codes on different levels may not be identical. This is clearly violated in MedDRA, as the example below shows.

Violating the Definite Degree of Transitiveness (DDoT) property: PT Botulism and LLT Botulism have different p numbers, i.e. different levels, but have nonetheless the same code. This makes the entity 10006041 indeterminate – is it the PT or the LLT for botulism? This is a result of the ‘leaf node constraint’ of MedDRA’s design, but a bug by design is still a bug, not a feature.

Bonus: the ethical problem

To me as a public health researcher, there is a huge ethical problem with the use of MedDRA in VAERS. I believe very strongly in open data and in the openness of biomedical information. I’m not alone: for better or worse, the wealth – terabytes upon terabytes – of biomedical data, genetics, X-ray crystallography, models, sequences  prove that if I’m a dreamer, I’m not the only one.

Which is why it’s little short of an insult to the public that a pharmacovigilance system is using a proprietary encoding model.

Downloads from VAERS, of course, provide the verbose names of the conditions or symptoms, but not what hierarchical level they are, nor what structure they are on. For that, unless you are a regulatory authority or a ‘non-profit’ or ‘non-commercial’ (which would already exclude a blogger who unlike me has ads on their blog to pay for hosting, or indeed most individual researchers, who by their nature could not provide the documentation to prove they aren’t making any money), you have to shell out some serious money.

MedDRA is one expensive toy.

Worse, the ‘non-profit’ definition does not include a non-profit research institution or an individual non-profit researcher, or any of the research bodies that are not medical libraries or affiliated with educational institutions but are funded by third party non-profit funding:

This just keeps getting worse. Where would a non-profit, non-patient care provider, non-educational, grant-funded research institution go?

There is something rotten with the use of MedDRA, and it’s not just how unsuitable it is for the purpose, it is also the sheer obscenity of a public database of grave public interest being tied to a (vastly unsuitable and flawed, as I hope it has been demonstrated above) nomenclature.

Is VAERS lost?

Resolving the MedDRA issue

Unlike quite a few people in the field, I don’t think VAERS is hopelessly lost. There’s, in fact, great potential in it. But the way it integrates with MedDRA has to be changed. This is both a moral point – a point of commitment to opening up government information – and one of facilitating research.

There are two alternatives at this point for the CDC.

  1. MedDRA has to open up at least the 17% of codes, complete with hierarchy, that are used within VAERS. These should be accessible, complete with the hierarchy, within VAERS, including the CDC WONDER interface.
  2. The CDC has to switch to a more suitable system. ICD-10 alone is not necessarily the best solution, and there are few alternatives, which puts MedDRA into a monopoly position that it seems to mercilessly exploit at the time. This can – and should – change.

Moving past the Single Field Problem

MedDRA apart, it is crucial for VAERS to resolve the Single Field Problem. It is clear that from the issues presented in the first paragraph – a broken femur, Henoch-Schönlein purpura, fainting, an expired vaccine and a healthy childbirth – that there is a range of issues that need to be logged. A good structure would be

  1. pre-existing conditions and risk factors,
  2. symptoms that arose within 6 hours of administration,
  3. symptoms that arose within 48 hours of administration,
  4. symptoms that arose later than 48 hours of administration,
  5. non-symptoms,
  6. clinical tests without results,
  7. clinical tests segmented by positive and negative results, and
  8. ancillary circumstances, esp. circumstances pertaining to vaccination errors such as wrong vaccine administered, expired vaccine, etc.

The use of this segmentation would be able to differentiate not only time of occurrence, but also allow for adequate filtering to identify the correct denominators for the PRR.

A future with (for?) MedDRA

As said, I am not necessarily hostile to MedDRA, even if the closet libertarian in me bristles at the fact that MedDRA is mercilessly exploiting what is an effective monopoly position. But MedDRA can be better, and needs to be better – if not for its own economic interests, then for the interests of those it serves. There are three particular suggestions MedDRA needs to seriously consider.

  1. MedDRA’s entity structure is valuable – arguably, it’s the value in the entire project. If coding can be structured to reflect its internal hierarchy, MedDRA becomes parseable without a LUT,[1] and kinship structures become parseable without the extra step of a LUT.
  2. MedDRA needs to open up, especially to researchers not falling within its narrowly defined confines of access. Especially given the inherent public nature of its use – PhV and regulation are quintessentially public functions, and this needs an open system.
  3. MedDRA’s entity structure’s biggest strength is that it comprises a range of different things, from administrative errors through physical injuries to test results and the simple fact of tests.

Conclusion

VAERS is a valuable system with a range of flaws. All of them are avoidable and correctable – but would require the requisite level of will and commitment – both on CDC’s side and that of MedDRA. For any progress in this field, it is imperative that the CDC understand that a public resource maintained in the public interest cannot be driven by a proprietary nomenclature, least of all one that is priced out of the range of the average interested individual: and if they cannot be served, does the entire system even fulfill its governmental function of being of the people and for the people? It is ultimately CDC’s asset, and it has a unique chance to leverage its position to ensure that at least as far as the 17% of MedDRA codes go that are used in VAERS, these are released openly.

In the end, however sophisticated our dissimilarity metrics, when 30% of all entities are non-symptoms and we need to manually prune the key terms to avoid denominator bloat due to non-symptom entities, such as diagnostic tests without results or clearly unconnected causes of morbidity and mortality like motor vehicle accidents, dissimilarity based approaches will suffer from serious flaws. In the absence of detailed administration and symptom tracking at an individual or institutional level, dissimilarity metrics are the cheapest and most feasible ways of creating value out of post marketing passive reports. If VAERS is to be a useful research tool, as I firmly believe it was intended to be, it must evolve to that capability for all.

References   [ + ]

1. Look-up table

Ebola! Graph databases! Contact tracing! Bad puns!

Thanks to the awesome folks at Neo4j Budapest and GraphAware, I will be talking tonight about Ebola, contact tracing, how graph databases help us understand epidemics and maybe prevent them someday. Now, if flying to Budapest on short notice might not work for you, you can listen to a livestream of the whole event here! It starts today, 13 February, at 1830 CET, 1730 GMT or 1230 Eastern Time, and I sincerely hope you will listen to it, live or later from the recording, also accessible here.

In extremis

It’s not frequent for a State of the Union address to delve into drug approval policy in any depth. Yet that’s exactly what President Trump did when, for the first time, he spoke publicly about legislation allowing terminally ill patients to access experimental treatments that have passed only FDA Phase I trials, often referred to as ‘right to try’ legislation:

We also believe that patients with terminal conditions should have access to experimental treatments that could potentially save their lives. People who are terminally ill should not have to go from country to country to seek a cure — I want to give them a chance right here at home. It is time for the Congress to give these wonderful Americans the ‘right to try’.

The Right to Try is unsurprisingly controversial. On one hand, patient groups see it as a chance to access treatments that are too far in the pipeline for them. It is hard not to have sympathy with this argument. It is especially hard for me to do so so, because my life was saved by an experimental drug that at the time did not have general approval for my condition, though it was known to be safe. At the same time, FDA Commissioner Scott Gottlieb is right to be skeptical about this policy effectively usurping the FDA’s authority to ensure that pharmaceuticals administered to all patients in the United States are safe and effective. Like all great moral quandaries, both sides are, to an extent, right.

What is ‘right to try’?

Quite simply put, right to try laws allow terminally ill patients access to treatments, medications and devices that have passed FDA Phase I testing, but are not yet approved by the FDA. The libertarian Goldwater Institute, which has been pushing and lobbying for right to try, has created a model legislation, variants of which have by now been accepted by 38 states. It provides, in short, an exception for patients suffering from “advanced illness”, defined as

a progressive disease or medical or surgical condition that entails significant functional impairment, that is not considered by a treating physician to be reversible even with administration of current federal drug administration approved and available treatments, and that, without life-sustaining procedures, will soon result in death.[1]

Patients that qualify under this definition would then be allowed access to any treatment, pharmaceutical or device as long as it has passed Phase I testing,[2] although the manufacturer or provider would be under no obligation to sell or provide that treatment to the patient.

Ethical issues

The ‘right to try’ legislation is far from uncontroversial. @gorskon, whom I greatly respect even when I disagree with him, has gone so far as to call it a ‘cruel sham’ and a libertarian attack on the FDA, and his points merit consideration:

I’ve written many times before over the last three years about how “right-to-try” laws have swept the states. When last I wrote about right-to-try, 37 states had passed such laws over the course of a mere three years, and I observed at the time that it wouldn’t surprise me in the least if most or all of the remaining states were to pass such laws within the next year or two. Basically, the idea behind these laws is that the FDA is killing patients (I’m only exaggerating slightly) through its slow drug approval, overcaution, and bureaucratic inertia, or at least letting them die because life-saving drugs are being held up. So the idea, hatched by the Goldwater Institute was that terminally ill patients should have the “right-to-try” experimental drugs not yet approved by the FDA because they have nothing more to lose. Of course, it’s not true that they have nothing more to lose, but I’ll discuss that more later. Basically, right-to-try laws purport to allow the terminally ill “one last shot” by letting them access experimental therapeutics outside of FDA-sanctioned clinical trials. However, these laws operate under a number of false assumptions, not the least of which is the caricature of the FDA as being slow, inefficient, and unwilling to bend, as you will see. They also strip away a number of protections for patients, as you will also see.

While I am not sure I’m on board with the idea of there being a libertarian conspiracy to curb the FDA’s powers – especially given how limited the ambit of right to try legislations would be -, Orac makes an excellent point.

Much of the Goldwater Institute’s position is premised on the FDA being ‘slow’ and inefficient – as they like to present their case, they merely seek to remedy an instance of the state failing to serve citizens adequately. Speaking from personal experience, when you’re dying, everything is too slow and no approval process can come fast enough. It is hard not to have a lot of sympathy towards the patients who know there may be a promising drug in the pipeline but like Moses of old, they will never get to see the promised land. But realistically, the FDA is not slow – indeed, it is as fast as, or sometimes even faster, than regulatory agencies in many other countries.[3]

I would also add that the benefits of investigational therapies has rarely been particularly high, with only about 10% yielding a clinical improvement.[4]. For 90% of patients, then, the right to try would mean putting themselves through another round of torturous treatment instead of spending their last weeks or months focusing on appropriate symptom relief, quality of life and putting their affairs in order. In the end, these might be more important than a forlorn hope of extending one’s life by another few months.

Patients are subject to a high degree of informational asymmetry. When I had to decide between various treatments, I spent days on PubMed, reading every single study, building my own little mini-metaanalysis from my hospital bed. I was lucky – I had access to all the academic literature I could want and I was trained in evaluating that evidence. But most patients aren’t (and there’s no reason why they would be!),[5] and what takes the place of sound knowledge is often less healthy. Patients may feel emotional pressure to try every treatment, however modest the chance of success: be it because they would feel that not doing so is ungrateful towards the doctors who ‘fought for them’, or because they feel they owe it to their family, the psychological pressure to try potentially ineffective treatments is immense, and might rob the patient from their chance to exercise some degree of autonomy over the last moments of their life.

The reverse of the medal

At the same time, many note, respect for the patient’s autonomy should extend to allowing treatment that a competent patient wants, even if the physician disagrees. And, in addition, many argue that it would be paradoxical to allow patients to outright request physician-assisted suicide but not the administration of a treatment that may just save their lives. These arguments are not pointless, and any policy needs to justify why paternalism is particularly justified in this case, and while treatment would be inappropriate where suicide would be permitted.

More importantly, it is arguable that the absence of a ‘right to try’ leads to its own set of tragic adverse consequences, by directing patients to ‘try’ treatments in the unregulated sector of outright quackery. I had the distinct misfortune of witnessing one of these.

Jillian Mai Thi Epperly is an unqualified naturopathic healer with no educational background in nutrition who is running what she describes as a large-scale experiment on volunteers (aka marks). Her victims – around 30,000 – joined her Facebook group, which is closer to a cult than anything else, and consume vast quantities of a concoction that contains an unhealthy amount of salt and fermented cabbage juice. This is supposed to rid the body of ‘weaponised mutant candida and parasites’, which she claims is responsible for all or most pathological processes in the human body. Ms Epperly’s Facebook group is replete with images generally for the strong of stomach (including gut lining which her acolytes believe are parasites), but that’s nothing compared to the damage she has done to human lives. None is more tragic than the story of J. (name redacted in the interests of privacy), who is suffering from an unspecified cancer, and who was one of the biggest supporters of the ‘protocol’… until the placebo effect wore off, and she realised it is all a fraud. But valuable time spent on a miserable, painful treatment that bore no benefit, and might well accelerated J.’s disease progression.

There are, as we speak, thousands, if not millions, of Jillian Epperlys, peddling their fraudulent wares to an uninformed public. When the chips are down and conventional treatment options have been exhausted, patients will always turn to alternatives. With Right to Try, they could do so under medical supervision, adequately counseled and with their side effects managed. Moreover, the medications administered would have to adhere to standards of manufacture (GMP) and have a well-understood mechanism of action in most cases. There will always be desperate patients – and a well-designed Right to Try policy may keep them away from quacks and within the traditional medical system that would cater better for their needs and handle the transition from trying salvage/last-ditch treatments to palliative care and ensuring adequate end-of-life care.

Another undesirable aspect is the existence of an informal right to try. Darrow et al. describe the case of Josh Hardy, a 7-year-old boy who received the experimental antiviral drug brincidofovir after the media drew sufficient attention to his case for the manufacturer to ‘add’ Josh to an open-label study.[6] Similarly, public sympathy for the aid workers from Samaritan’s Purse, including Kent Brantly, allowed for the use of the chimeric monoclonal antibody ZMapp. From the perspective of health equity, it is concerning that this informal procedure is amenable only to those with the means and connections to launch a massive social media campaign. In this sense, it is eerily reminiscent of the case of Sarah Murnaghan, whose lung transplant ineligibility was supervened by a large public campaign. It is fair to question whether the effects of a discretionary scheme that ultimately favours those with social, political and economic influence would not be better supplanted by a formal, equitable system available to all on equal terms.

The light and the dark

I don’t normally discuss end-of-life policy or bioethics: my days in that field are long gone, and my priority now is to try to avert those situations. However, to me, Right to Try will always be more than an abstract issue. A few years ago, a last-ditch therapy ended up working so well, it saved my life and put me into remission. After failing two different treatment regimens, we were out of conventional options, and things looked bleak – until a dedicated consultant oncologist took on the drug manufacturer, the hospital board and even the government, so as to be allowed to administer a drug still not approved for the particular indication. It was a huge gamble, and it worked. I will forever be grateful for the chance I’ve been given – but I’m also aware that I was the exception, not the rule, and n=1 doth not a good rule make.

I believe that even if the current version of Right to Try is, as Orac says, a ‘cruel sham’, it does not inherently have to be so.

There is enormous potential in Right to Try policies, not only for patients but also for drug development and future patients. Well implemented, it does not have to be a cruel sham. Nor does it necessarily have to be a wholesale ouster of the FDA’s competence.

But if it is to be anything other than that, it has to come with a comprehensive institutional structure that ensures that consent is truly free and adequate. Crucially, an independent physician must be available to honestly explain the odds and assess the patient’s understanding and capacity.[7] The process must focus on balancing respect for patient autonomy against a degree of paternalism needed to protect a vulnerable patient. And in the end, it is paramount to have a sensitive understanding of the potential pressures the patient is under. It is not an easy task. But it is not an impossible one.

Many states now speak of ‘death with dignity’ as a euphemism for physician-assisted suicide. Perhaps to some people, that indeed is dignity, and it is a choice that deserves consideration. It is not cowardice or refusal to fight. But what about patients whose concept of dignity would closer encompass ‘staying in the fight’? Whether it is right or wrong, the practice of physician assisted suicide has shown that true consent can be separated from impaired consent in such a difficult scenario. Why, then, would it be impossible to separate instances where the Right to Try would merely engender false hope from those where it might have a small but not unrealistic clinical chance to succeed?

In the end, one needs to be able to separate the present rules from the principle. The present rules, and much of the motivation behind it, are clearly imperfect. But the potential behind Right to Try is significant. Regulated Right to Try can curb quackery and unregulated charlatans preying on the incurably ill by providing more legitimate last-ditch treatments carried out under medical supervision. It can accelerate research without prejudicing patient welfare if the pharmaceutical manufacturer is kept at arm’s length. And maybe, just maybe, it can save lives.

The current legislative framework might not be there yet. But it has the potential to make a difference not just to research but for millions of patients who have exhausted all possibilities, who, like me, might strike gold. Just as the history of science is one of incremental development, procedures and practices should be given the chance to develop over time.

References   [ + ]

1. Right to Try Model Legislation, sec.1(2)(a).
2. Ibid., sec.2(1).
3. Downing, N.S. et al. Regulatory review of novel therapeutics – comparison of three regulatory agencies. N Engl J Med 366:2284-2293.
4. Freireich, E.J. et al. The role of investigational therapy in management of patients with advanced metastatic malignancy. J Clin Oncol 27:304-306.
5. Woloshin S, Schwartz LM, Welch HG. Patients and medical statistics: interest, confidence, and ability. J Gen Intern Med 20:996-1000.
6. Darrow, J.J. et al. Practical, Legal and Ethical Issues in Expanded Access to Investigational Drugs. N Engl J Med 372:279-286.
7. In all honesty, I am not entirely sure that all too many patients in that emotionally and physically difficult situation are lucid enough to comprehend the entirety of what is involved in such a decision!